Problem Statement & Experimental Setting
Illustration from Standalone Analysis
Ensemble Spread Examination
Cycled-Analysis Evaluation
Forecast Verification vs Observations
Forecast Verification vs Analysis
Summary

Hybrid Data Assimilation without Ensemble Filtering

Ricardo Todling and Amal El Akkraoui

Global Modeling and Assimilation Office NASA

National Centers for Environmental Prediction 16 January 2013

Contributions from: D. Kleist, D. Parrish, R. Treadon, and J. Whitaker

Problem Statement & Experimental Setting Illustration from Standalone Analysis Ensemble Spread Examination Cycled-Analysis Evaluation Forecast Verification vs Observations Forecast Verification vs Analysis

Outline

- 1 Problem Statement & Experimental Setting
- 2 Illustration from Standalone Analysis
- 3 Ensemble Spread Examination
- 4 Cycled-Analysis Evaluation
- 5 Forecast Verification vs Observations
- 6 Forecast Verification vs Analysis
- Summary

Variational Formulation Filter-Free Ensemble GEOS Data Assimilation System GEOS IAU-based 3dVar GEOS IAU-based Hybrid 3dVar Experimental Setting

Variational Formulations

FGAT 3dVar-ensemble Hybrid:

$$J(\delta \mathbf{x}) = \frac{1}{2} \delta \mathbf{x}^{\mathsf{T}} \mathbf{B}_{h}^{-1} \delta \mathbf{x} + \frac{1}{2} \sum_{k=1}^{K} [\mathbf{H}_{k} \delta \mathbf{x} - \mathbf{d}_{k}]^{\mathsf{T}} \mathbf{R}_{k}^{-1} [\mathbf{H}_{k} \delta \mathbf{x} - \mathbf{d}_{k}] + J_{x}$$

where

- $B_h = \beta B + (1 \beta)B_e \circ C$ is a *hybrid* of static and ensemble-based error covariances, **B** and B_e respectively;
- C is a localization error covariance of compact support;
- the control variable changes to be $\delta \mathbf{x} = \delta \mathbf{x}_0 + \sum_m^M \delta \mathbf{x}_m^e \circ \alpha_m$, for an ensemble with a total of M members $\delta \mathbf{x}_m^e$;
- NCEP and GMAO get $\delta \mathbf{x}_m^e$ by using the EnKF plus inflation.
- NOTE: in 3d-Var, the alpha-control variable augmentation leads to a problem similar to that posed to bias-correct the background fields, the only difference being that the hybrid approach dynamically updates the bias error covariance.

Variational Formulation Filter-Free Ensemble GEOS Data Assimilation System GEOS IAU-based 3dVar GEOS IAU-based Hybrid 3dVar Experimental Setting

Variational Formulations

FGAT 3dVar-ensemble Hybrid:

$$J(\delta \mathbf{x}) = \frac{1}{2} \delta \mathbf{x}^{\mathsf{T}} \mathbf{B}_{h}^{-1} \delta \mathbf{x} + \frac{1}{2} \sum_{k=1}^{K} [\mathbf{H}_{k} \delta \mathbf{x} - \mathbf{d}_{k}]^{\mathsf{T}} \mathbf{R}_{k}^{-1} [\mathbf{H}_{k} \delta \mathbf{x} - \mathbf{d}_{k}] + J_{x}$$

where

- $B_h = \beta B + (1 \beta)B_e \circ C$ is a *hybrid* of static and ensemble-based error covariances, B and B_e respectively;
- C is a localization error covariance of compact support;
- the control variable changes to be $\delta \mathbf{x} = \delta \mathbf{x}_0 + \sum_m^M \delta \mathbf{x}_m^e \circ \alpha_m$, for an ensemble with a total of M members $\delta \mathbf{x}_m^e$;
- NCEP and GMAO get $\delta \mathbf{x}_m^e$ by using the EnKF plus inflation.
- NOTE: in 3d-Var, the alpha-control variable augmentation leads to a problem similar to that posed to bias-correct the background fields, the only difference being that the hybrid approach dynamically updates the bias error covariance.

Variational Formulation Filter-Free Ensemble GEOS Data Assimilation Systen GEOS IAU-based 3dVar GEOS IAU-based Hybrid 3dVar Experimental Setting

Problem Statement

- Hybrid DA schemes include both multiplicative and additive inflation
- Evaluations in GEOS DAS suggest:
 - Hybrid approach provides noticeable improvements only when using additive inflation, i.e., EnKF alone doesn't do it
 - Forecasts from EnKF analyses plus additive inflation result in mild spread within the background time window
 - It seems that much of the initial (analysis) spread can be simulated with additive inflation alone
 - Appreciable background spread is obtained in the latter case

Question: how does hybrid-DA perform when the ensemble filter is dropped and an ensemble of analyses is created from simply additively inflating the central analysis?

Problem Statement & Experimental Setting
Illustration from Standalone Analysis
Ensemble Spread Examination
Cycled-Analysis Evaluation
Forecast Verification vs Observations
Forecast Verification vs Analysis
Summary

Variational Formulation Filter-Free Ensemble GEOS Data Assimilation System GEOS IAU-based 3dVar GEOS IAU-based Hybrid 3dVar Experimental Setting

Problem Statement

- Hybrid DA schemes include both multiplicative and additive inflation
- Evaluations in GEOS DAS suggest:
 - Hybrid approach provides noticeable improvements only when using additive inflation, i.e., EnKF alone doesn't do it
 - Forecasts from EnKF analyses plus additive inflation result in mild spread within the background time window
 - It seems that much of the initial (analysis) spread can be simulated with additive inflation alone
 - Appreciable background spread is obtained in the latter case

Question: how does hybrid-DA perform when the ensemble filter is dropped and an ensemble of analyses is created from simply additively inflating the central analysis?

Variational Formulation Filter-Free Ensemble GEOS Data Assimilation Systen GEOS IAU-based 3dVar GEOS IAU-based Hybrid 3dVar Experimental Setting

Reasoning behind the filter-free approach

Take the true state to evolve according to: $\mathbf{x}^t = \tilde{\mathbf{m}}(\mathbf{x}_0^t)$

Take the forecasting model to evolve as in: $\mathbf{x}^f = \mathbf{m}(\mathbf{x}_0)$

To first order, an initial uncertainty δe produces to following forecast error:

$$\delta \mathbf{e}^f pprox \mathbf{M}(\delta \mathbf{x}_0 + \delta \mathbf{e}) + \mathbf{q}$$

where $\delta \mathbf{x}_0 = \mathbf{x}_0 - \mathbf{x}_0^t$ and $q \equiv \mathbf{m}(\mathbf{x}_0^t) - \tilde{\mathbf{m}}(\mathbf{x}_0^t)$.

- For unbiased models, initial uncertainty does not represent model error
- First term in the expression represents propagation of initial uncertainty
- In present ensemble (hybrid) implementations:

δx₀ is a member analysis increment

δe is an inflation term added to the increment

→ These represent redundant treatment of initial uncertainty

The present work evaluates the case when δx_0 is ignored; that is, the ensemble is generated from inflated initial errors over the central analysis.

Variational Formulation Filter-Free Ensemble GEOS Data Assimilation System GEOS IAU-based 3dVar GEOS IAU-based Hybrid 3dVar Experimental Setting

Atmospheric GCM

- Fully ESMF-based
- Cubed-sphere hydrostatic dynamical core
- RAS-Bacmeister convective physics
- Chou-Suarez radiation scheme
- Koster et al. catchment land-surface model
- Lock et al. turbulence physics
- Interactive ozone
- Interactive GOCART aerosols
- OSTIA-prescribed SST

Analysis: GSI

- FGAT 3D-Var
- IAU-based assimilation
 - TLNMC balance
- JCSDA CRTM
- Double-PCG minimization

Ensemble filter

- ESRL-NCEP EnKF
- Full obs but ozone and precip

Variational Formulation Filter-Free Ensemble GEOS Data Assimilation System GEOS IAU-based 3dVar GEOS IAU-based Hybrid 3dVar Experimental Setting

Schematic of GEOS IAU-based 3dVar

Variational Formulation Filter-Free Ensemble GEOS Data Assimilation Syster GEOS IAU-based 3dVar GEOS IAU-based Hybrid 3dVar Experimental Setting

Schematic of IAU-based Hybrid 3dVar

Variational Formulation Filter-Free Ensemble GEOS Data Assimilation System GEOS IAU-based 3dVar GEOS IAU-based Hybrid 3dVar Experimental Setting

Hybrid Experimental Setting

- Central DAS: 0.5° outer and inner loops; 72-levels
- 32 Ensemble Forecasts: 1.0°; 72-levels
- GSI Hybrid/Static B: 50% / 50%
- TLNMC applied to both static & hybrid covariances
- Vertical & horizontal localizations applied to ensemble B
- Add/ve perturbations scaled from NMC-like 48-24hr forecasts
- Experiment period (after spin up): April 2012

EnKF

- Additive perturbation: 0.25
 - **EnKF**

Filter-Free

- Additive perturbation: 0.6
- No Ensemble Filtering

Analysis Increment as Total Energy for 00 UTC on 1 Jun 2012 Static-Only Hybrid (50%/50%) 32-mem Ens-Only Total (wet) Energy (x3e-4 J/kg) Static Total (wet) Energy (x3e-4 J/kg) Ensemble Total (wet) Energy (x3e-4 J/kg) Hybrid

0-hr Analyses Spread (before additive inflation) as Total Energy

EnKF-based hybrid

Forecast Verification vs Analysis

Zonal Spread Time Series of Spread Global Spread

3-hr Background Spread

EnKF-based hybrid

6-hr Background Spread

EnKF-based hybrid

9-hr Background Spread

EnKF-based hybrid

Evolution of 6-hr Background Spread

EnKF-based hybrid

Spread within 9-hr Background Period

EnKF-based hybrid

Rank-histograms, EnKF: speed (top) and temperature (bottom) 850 hPa $\,$ 500 hPa $\,$ 1 hPa $\,$ 1 hPa

Rank-histograms, Filter-free early tuning: speed (top) and temperature (bottom) 850 hPa $\,$ 500 hPa $\,$ 200 hPa $\,$ 1 hPa

Rank-histograms, Filter-free later tuning: speed (top) and temperature (bottom) 850 hPa $\,$ 500 hPa $\,$ 200 hPa $\,$ 1 hPa

Magnitude of Analysis Tendencies Comparison with Other Analyses Observations Contributions

Comparison w/ NCEP: Zonally-Averaged Monthly Mean U-Wind

Control 3d-Var

EnKF-based hybrid

Comparison w/ ECMWF: Zonally-Averaged Monthly Mean U-Wind

Control 3d-Var

EnKF-based hybrid

Comparison w/ ECMWF: Zonally-Averaged Monthly Mean U-Wind

EnKF-based hybrid

Magnitude of Analysis Tendencie Comparison with Other Analyses Observations Contributions

Observation Impact on Analysis

Fractional

GEOS-5 Summary 1 Apr 2012-30 Apr 2012 Global Domain Fractional Impact WINDSAT Wind 3dVar-Hybrid TMI Rain Rate 3dVar-HyQuick Satellite Wind Radiosonde Profiler Wind PIRAL NEXRAD Wind MODIS Wind MHS Marine-Surface Land-Surface IASI HIRS GPSRO Dropsonde ASCAT Wind Agua AIRS AMSUA Aircraft 0 10 20 25 30 35 Observation Impact (%)

Beneficial

Observations fit to background

Raob Biases: Zonal Winds (top); Temperature (bottom)

NH Tropics SH

Observations fit to background

Raob Zonal Winds RMS

Observations fit to 24-hour forecast

Raob Zonal Winds

24-hour

Raob Temperatures

Forecast Error Measured as Total Energy Forecast RMS Error Forecast Anomaly Correlation

12-hour Error and Ensemble Spread within Background Period

EnKF-based hybrid

Forecast Error Measured as Total Energy Forecast RMS Error Forecast Anomaly Correlation

24-hour: Zonal Winds

NH Tropics SH

Forecast Error Measured as Total Energy Forecast RMS Error Forecast Anomaly Correlation

24-hour: Temperature

NH Tropics SH

Forecast Anomaly Correlation

Anomaly Correlations: H500

Northern Hemisphere

Southern Hemisphere

Problem Statement & Experimental Setting
Illustration from Standalone Analysis
Ensemble Spread Examination
Cycled-Analysis Evaluation
Forecast Verification vs Observations
Forecast Verification vs Analysis
Summary

Summary

Main Points

- Overall 3d-hybrid approach gives positive results in GEOS DAS with noticeable reduction of model biases and improved skill scores
- Filter-free scheme works just as well as EnKF in sustaining ensemble
- Would be nice to study skill of NMC-like perturbations in an EPS

Advantages of Filter-Free Hybrid

- Really inexpensive way of generating ensemble
- Avoids need to maintain two analysis systems
- Avoids contradictions when calculating adjoint-based obs impact

More tests taking place before deciding on operational scheme

This work benefited tremendously from continual collaboration with NCEP

